Extensions 1→N→G→Q→1 with N=C32 and Q=D4⋊C4

Direct product G=N×Q with N=C32 and Q=D4⋊C4
dρLabelID
C32×D4⋊C4144C3^2xD4:C4288,320

Semidirect products G=N:Q with N=C32 and Q=D4⋊C4
extensionφ:Q→Aut NdρLabelID
C32⋊(D4⋊C4) = C2.AΓL1(𝔽9)φ: D4⋊C4/C2SD16 ⊆ Aut C32248+C3^2:(D4:C4)288,841
C322(D4⋊C4) = C3⋊S3.2D8φ: D4⋊C4/C4D4 ⊆ Aut C32244C3^2:2(D4:C4)288,377
C323(D4⋊C4) = C62.3D4φ: D4⋊C4/C22D4 ⊆ Aut C3248C3^2:3(D4:C4)288,387
C324(D4⋊C4) = D123Dic3φ: D4⋊C4/C2×C4C22 ⊆ Aut C3296C3^2:4(D4:C4)288,210
C325(D4⋊C4) = C6.16D24φ: D4⋊C4/C2×C4C22 ⊆ Aut C3296C3^2:5(D4:C4)288,211
C326(D4⋊C4) = C6.17D24φ: D4⋊C4/C2×C4C22 ⊆ Aut C3248C3^2:6(D4:C4)288,212
C327(D4⋊C4) = C3⋊S3.5D8φ: D4⋊C4/D4C4 ⊆ Aut C32248+C3^2:7(D4:C4)288,430
C328(D4⋊C4) = C3×C6.D8φ: D4⋊C4/C4⋊C4C2 ⊆ Aut C3296C3^2:8(D4:C4)288,243
C329(D4⋊C4) = C62.113D4φ: D4⋊C4/C4⋊C4C2 ⊆ Aut C32144C3^2:9(D4:C4)288,284
C3210(D4⋊C4) = C3×C2.D24φ: D4⋊C4/C2×C8C2 ⊆ Aut C3296C3^2:10(D4:C4)288,255
C3211(D4⋊C4) = C62.84D4φ: D4⋊C4/C2×C8C2 ⊆ Aut C32144C3^2:11(D4:C4)288,296
C3212(D4⋊C4) = C3×D4⋊Dic3φ: D4⋊C4/C2×D4C2 ⊆ Aut C3248C3^2:12(D4:C4)288,266
C3213(D4⋊C4) = C62.116D4φ: D4⋊C4/C2×D4C2 ⊆ Aut C32144C3^2:13(D4:C4)288,307


׿
×
𝔽